# Rutgers University <br> School of Engineering 

Fall 2022
332:231 - Digital Logic Design
Sophocles J. Orfanidis
ECE Department
orfanidi@rutgers.edu

Unit 8 - Finite State Machines

## Course Topics

1. Introduction to DLD, Verilog HDL, MATLAB/Simulink
2. Number systems
3. Analysis and synthesis of combinational circuits
4. Decoders/encoders, multiplexers/demultiplexers
5. Arithmetic systems, comparators, adders, multipliers
6. Sequential circuits, latches, flip-flops
7. Registers, shift registers, counters, LFSRs
8. Finite state machines, analysis and synthesis

Text: J. F. Wakerly, Digital Design Principles and Practices, 5/e, Pearson, 2018 additional references on Canvas Resources

Sequential circuits (Wakerly, Chapters 9, 10,11 )
Topics discussed are:
Finite state machines (FSM)
Mealy vs. Moore FSMs
State diagrams
State tables
State assignment \& encoding
Gate-level implementation with D flip-flops
Design Examples

Contents:

1. Finite state machines (FSM)
2. Mealy vs. Moore FSMs, design steps
3. State diagrams
4. State tables, compact and conventional forms
5. State assignment \& encoding (plain binary, Gray, one-hot)
6. Gate-level implementation with D flip-flops
7. Examples: design of a car alarm system design of a 2-bit counter with input \& output analyzing FSM block diagrams cruise control system, Moore \& Mealy versions sequence recognizers
state reduction
electronic keypad lock
vending machine elevator controller

## References

J. F. Wakerly, Digital Design Principles and Practices, 5/e, Pearson, 2018.
S. Brown and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design, 3/e, McGraw-Hill, 2014.
D. M. Harris and S. L. Harris, Digital Design and Computer Architecture, 2/e, Elsevier, 2013.
M. Mano, C. R. Kime, and T. Martin, Logic and Computer Design Fundamentals, 5/e, Pearson, 2016.
A. F. Kana, Digital Logic Design, [on Canvas].
E. O. Hwang, Digital Logic and Microprocessor Design with Interfacing, 2/e, Cengage, 2018.
C. Maxfield, Bebop to the Boolean Boogie, 2/e, Newnes, 2009.
sequential circuits and finite state-machines (FSM) are special cases of dynamic systems


In general, a system can be defined by specifying the I/O computational rule that determines the output signal $y(t)$ from the input signal $x(t)$.

The time variable $t$ can be continuous or discrete. The system can be linear or non-linear, time-invariant or time-varying, and can be described by differential or difference equations.

## State Machines

State-space realizations, also known as state-space models, have a very large number of applications in many diverse fields, such as,
digital logic design
differential equations for physical systems
system theory
electric circuits
linear systems
digital signal processing
control systems
communication systems
predictive analytics
biomedical signal processing
geophysical signal processing
aerospace engineering
military systems
statistics and time series analysis econometrics and financial engineering

## State Machines

State-space realizations are very powerful representations of systems (linear or nonlinear, time-invariant or not).

The system is described by a set of internal states at each time instant $t$, denoted for example by $Q(t)$, and these states are used to compute the current output $y(t)$ in terms of the current input $x(t)$, and then update the states to their next values, $Q(t+1)$, so that they can be used at time $t+1$ (or, more generally at, $t+\Delta t$ ).

In other words, the system's time evolution is described iteratively by a computational algorithm of the form,

$$
\text { for each time instant } t \text {, do: }
$$

$$
\begin{array}{l|l}
y(t)=G(x(t), Q(t)) & (\text { compute output) } \\
Q(t+1)=F(x(t), Q(t)) & \quad(\text { update state })
\end{array}
$$

[ to get started, one needs to know the initial state, $Q(0)$ ]

## State Machines

For example, in going from time $t$ to time $t+2$, one carries out the steps:
at time $t$,

$$
\begin{aligned}
& y(t)=G(x(t), Q(t)) \\
& Q(t+1)=F(x(t), Q(t))
\end{aligned}
$$

at time $t+1$,
$F()$ and $G()$ depend on application in DLD, $F$ is referred to as next-state logic, or excitation logic and, $G$ is referred to as output logic
from here on, we'll use the simplified notation,

$$
\begin{aligned}
& \quad x_{t}, y_{t}, Q_{t} \\
& \text { for } \\
& \quad x(t), y(t), Q(t)
\end{aligned}
$$

etc.

$$
\begin{aligned}
& y(t+2)=G(x(t+2), Q(t+2)) \\
& Q(t+3)=F(x+2), Q(t+2))
\end{aligned}
$$

## State Machines

It should be emphasized that the updated state $\mathrm{Q}_{t+1}$ is being computed at time $t$, and becomes available at time $t$, replacing $\mathrm{Q}_{t}$, but it is saved until it is used later at time $t+1$.

The computations can be cast as a repetitive algorithm, in which the present state is overwritten by the next state.
initialize state $Q$ (typically at $t=0$ ), then,
at each time $t$, do,

$$
\begin{aligned}
& y_{t}=G\left(x_{t}, Q\right) \\
& Q=F\left(x_{t}, Q\right)
\end{aligned}
$$

or,

$$
\begin{aligned}
& y_{t}=G\left(x_{t}, Q\right) \\
& Q_{\text {next }}=F\left(x_{t}, Q\right) \\
& Q=Q_{\text {next }}
\end{aligned}
$$

## State Machines

We are assuming that time is discretized in units of 1 , which means one clock period, so that $t+1$ means one clock period ahead of $t$.

In DLD (essentially all) sequential circuits are synchronously driven by a clock, and the state changes occur during the rising edge of the clock period (or, alternatively - but less commonly - during the falling edge.)


## State Machines

State machines in DLD fall into two general families:
Moore type:
output equation depends only on $Q$, i.e., $y=G(Q)$
Mealy type:
output equation depends on both $x$ and $Q$, i.e., $y=G(x, Q)$
for each time instant $t$, do:

$$
\begin{aligned}
& y_{t}=G\left(x_{t}, Q_{t}\right) \\
& Q_{t+1}=F\left(x_{t}, Q_{t}\right)
\end{aligned}
$$

in general, one can have multiple inputs, multiple outputs (MIMO systems), and multiple states.
simplified notation
$\qquad$
$\longrightarrow$

$$
\begin{aligned}
& y=G(x, Q) \\
& Q_{\text {next }}=F(x, Q) \\
& \uparrow \\
& \text { changes occur at } \\
& \text { clock rising edges }
\end{aligned}
$$

## State Machines - Moore


period $=t_{\text {per }} t$
frequency $=1 / t_{\text {per }}$
duty cycle $=t_{\mathrm{H}} / \mathrm{t}_{\text {per }}$

## State Machines - Mealy


clock
signal


$$
\begin{aligned}
& y_{t}=G\left(x_{t}, Q_{t}\right) \text { Mealy } \\
& Q_{t+1}=F\left(x_{t}, Q_{t}\right)
\end{aligned}
$$



A more compact way of drawing an FSM is depicted below, assuming that D flip-flops are used for the memory/state-holding elements. The advantage is that the next states, $\mathrm{Q}^{\text {next }}$, are the excitation inputs to the flip-flops, i.e., $D=Q^{\text {next }}$. See next page for an alternative drawing.


## Alternative drawing

The next states, $\mathrm{Q}^{\text {next }}$, are the excitation inputs to the flip-flops, i.e., $\mathrm{D}=\mathrm{Q}^{\text {next }}$. See next page on how to use other types of flip-flops.
feedback


Using T or JK flip-flops instead of D flip-flops: (a) carry out the design using D flip-flops, and, (b) replace each D flip-flop by a T or a JK flip-flop as shown below (effectively converting them to D flip-flops).


FSM design steps with D-flip-flops:

1. Start with verbal description of the system, specifying its inputs, outputs, and the number of required states, including how the states transition from one to another during each clock edge time instant. You may choose one of the states as the starting or reset state.
2. Convert the verbal description into a state diagram.
3. Convert the state diagram into a state table, that is, a truth table that includes the inputs, the present states, the next states, and the outputs.
4. Encode the symbolic states in terms of state variables, by making a particular state-assignment or state-encoding choice (i.e., binary or Gray coding) and re-write the state table in terms of the encoded state variables.
5. Based on the state table, develop expressions for the next-state equations, $\mathrm{Q}^{\text {next }}=\mathrm{F}(\mathrm{X}, \mathrm{Q})$, in terms of the present states Q and the inputs X , and also for output equations, $\mathrm{Y}=\mathrm{G}(\mathrm{X}, \mathrm{Q})$.
6. Implement step-5 as a combinational circuit with logic gates.
7. Feed back the next states $\mathrm{Q}^{\text {next }}$ to the D inputs of the D-flip-flops.
8. Connect a common clock signal to all the flip-flops, and also set the flip-flop "clear" inputs so that the system starts from the reset state.

Conversely, the FSM analysis problem starts with a given block-diagram realization for the FSM, and proceeds backwards through the above steps, deriving the state table, and clarifying the operation of the FSM.

FSM synthesis/design steps - Summary

1. Start with verbal description and choose states and the reset state.
2. Convert the verbal description into a state diagram.
3. Convert the state diagram into a state table.
4. Encode the symbolic states with D-flip-flop state variables.
5. Derive the next-state and output equations in terms of state variables.
6. Implement the design using D-flip-flops and logic gates.
7. Simulate it with MATLAB/Simulink to verify proper operation.
state diagrams are directed graphs that convey the same information as state tables, but in a graphical form, where the states are listed inside the circles and the arrows indicate the state transitions taking place at successive clock-edge time instants.

## Conventions for drawing state diagrams:

Along each arrow connecting two successive states $S$ and $S^{\text {next }}$, indicate the values of the inputs X that caused this transition from the current state S . Moreover, for Mealy machines, indicate along the same arrow the values of the outputs Y that resulted from the values of X and the current state S. But, for Moore machines, because the outputs Y depend only on the current state Q, indicate the values of Y inside the circle for the current state S.
 clock tick

Mealy $\leftarrow \begin{gathered}\mathrm{Y}=\mathrm{G}(\mathrm{S}, \mathrm{X}), \mathrm{Y}=\mathrm{G}(\mathrm{S}) \\ \mathrm{S}^{\text {next }}=\mathrm{F}(\mathrm{S}, \mathrm{X})\end{gathered} \rightarrow$ Moore

Example 1 - To clarify the above steps, we discuss the design of a Moore FSM for a car alarm system [cf. Hwang]. The alarm has an arming signal A, and it monitors several trigger inputs T, such as opening a door, breaking a glass, car vibration, opening the trunk, and so on. If the alarm is armed $(A=1)$, then, if one or more of the trigger inputs is set, the alarm siren will go on.

From this description we find that the siren signal will be,

$$
\text { siren }=A \cdot T
$$

where the overall trigger signal T is obtained from the OR-ing,

$$
\mathrm{T}=\text { door }+ \text { glass }+ \text { vibration }+ \text { trunk }+\cdots
$$

A realization is shown below. However, simple as this is, it has a major limitation: if the siren is on ( $\mathrm{A}=1$ and $\mathrm{T}=1$ ), then it will go off as soon as $\mathrm{T}=0$ even though $A=1$ (e.g., someone may break into the car and close the door and the siren will stop). This can be fixed by introducing memory into the system.

state diagram with state assignments $\mathrm{Q}=0,1$
characteristic table



fsm0s.slx on Canvas
Example 1

inputs $A, T$
input signal generator


Example 1

next-state network



## scope \& data export subfunction



Example 1

scope output

Example 1

## timing diagram


\% fsm0m.m on Canvas - MATLAB code for generating timing diagram \% data imported from Simulink structure S from file fsm0s.slx
t = S.time;
CLK = S.data(:,1);
A = S.data(:,2);
T = S.data (: , 3) ;
Q = S.data(:,4);
$\mathrm{AT}=\mathrm{A} \& \mathrm{~T}$;
\% time
\% clock pulses
\% arming signal
\% trigger signal
\% siren signal with memory
\% siren signal without memory
figure;
subplot(5,1,1); stairs(t,CLK, 'g-', 'linewidth',2); xaxis(0,8,0:8); yaxis(0,1.5,0:1); ylabel('clock');
subplot(5,1,2); stairs(t,A, 'b-', 'linewidth',2); xaxis(0,8,0:8); yaxis(0,1.5,0:1); ylabel('A');
subplot(5,1,3); stairs(t,T, 'm-', 'linewidth',2);
xaxis(0,8,0:8); yaxis(0,1.5,0:1); ylabel('T');
subplot(5,1,4); stairs(t,Q, 'r-', 'linewidth',2);
xaxis(0,8,0:8); yaxis(0,1.5,0:1); ylabel('siren');
subplot(5,1,5); stairs(t,AT, 'k-', 'linewidth',2);
xaxis(0,8,0:8) ; yaxis(0,1.5,0:1); ylabel('AT');
xlabel('\{\itt\}, clock periods')

Example 2 - To clarify the above steps, we discuss the design of an FSM for a 2-bit binary counter that has an enable input, and an output.

This differs from a plain counter that we considered in unit-7 in that it is a sequential circuit with an additional input and an output.

This is the same example as that of Fig. 9-8 in Wakerly, but instead of starting with the block diagram, we will start with the verbal description and work our way through the design steps, eventually ending up with a block-diagram realization.

Step 1: Verbal description. Design a counter that counts through the sequence, $0,1,2,3$, of decimal numbers. The counter must have an enable input E , such that when $\mathrm{E}=1$, the counting proceeds normally and repeating mod-4, but, it stops when $\mathrm{E}=0$. Moreover, there should be an output Y that indicates the completion of the counting sequence every four counts, that is, $\mathrm{Y}=1$, when the count reaches 3 , and $\mathrm{Y}=0$, otherwise. We may think of the successive numbers, $0,1,2,3$, as the states of the counter, and we will denote them in the abstract as, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$.
The reset state will be count $=0$, or, state, $S_{0}$.
state diagrams are directed graphs that convey the same information as state tables, but in a graphical form, where the states are listed inside the circles and the arrows indicate the state transitions taking place at successive clock-edge time instants.

## Conventions for drawing state diagrams:

Along each arrow connecting two successive states $S$ and $S^{\text {next }}$, indicate the values of the inputs X that caused this transition from the current state S . Moreover, for Mealy machines, indicate along the same arrow the values of the outputs Y that resulted from the values of X and the current state S. But, for Moore machines, because the outputs Y depend only on the current state Q, indicate the values of Y inside the circle for the current state S.
 clock tick

Mealy $\leftarrow \begin{gathered}\mathrm{Y}=\mathrm{G}(\mathrm{S}, \mathrm{X}), \mathrm{Y}=\mathrm{G}(\mathrm{S}) \\ \mathrm{S}^{\text {next }}=\mathrm{F}(\mathrm{S}, \mathrm{X})\end{gathered} \rightarrow$ Moore

Step 2: State diagram. This is a Mealy FSM because Y depends on the input E , e.g., $\mathrm{Y}=0$ when $\mathrm{E}=0$, but $\mathrm{Y}=1$ when $\mathrm{E}=1$ at state $\mathrm{S}_{3}$


Step 2: State diagram. Yet, another convention is to indicate the values of the input and output in the format $\mathrm{X} / \mathrm{Y}$, with the input written first and the output, second, along the transition arrows.


Step 3: State table. List all possible values of the input E and output Y , and all the required state transitions from present states to next states.
standard form

| input <br> E | present <br> state | next <br> state | output <br> Y |
| :---: | :---: | :---: | :---: |
| 0 | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{0}$ | 0 |
| 0 | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{1}$ | 0 |
| 0 | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{2}$ | 0 |
| 0 | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{3}$ | 0 |
| 1 | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ | 0 |
| 1 | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | 0 |
| 1 | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | 0 |
| 1 | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{0}$ | 1 |

compact form

| present <br> state | next <br> state |  | output <br> Y |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{E}=0$ | $\mathrm{E}=1$ | $\mathrm{E}=0$ | $\mathrm{E}=1$ |
| $\mathrm{~S}_{0}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ | 0 | 0 |
| $\mathrm{~S}_{1}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | 0 | 0 |
| $\mathrm{~S}_{2}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | 0 | 0 |
| $\mathrm{~S}_{3}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{0}$ | 0 | 1 |

count completed
then, repeat

Step 4: State assignment. In general, for an FSM with N states, one needs

$$
\mathrm{n}=\operatorname{ceiling}\left(\log _{2} \mathrm{~N}\right)
$$

state variables, each to be stored in a separate flip-flop. Thus, here, we need, $n=\log _{2}(4)=2$, state variables and two flip-flops, and we may choose the state variables to be binary bits denoted by $\mathrm{Q}_{1}, \mathrm{Q}_{0}$. The state table is now re-written in terms of the state variables.


Step 5: Next-state and output equations. Use K-maps.

| input <br> E | present <br> $\mathrm{Q}_{1} \mathrm{Q}_{0}$ | next <br> $\mathrm{Q}_{1}$ $\mathrm{Q}_{0}$ |  | output <br> Y |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 1 |



$$
\begin{aligned}
\mathrm{Q}_{1}{ }^{\text {next }} & =\mathrm{Q}_{1} \mathrm{E}^{\prime}+\mathrm{Q}_{1} \mathrm{Q}_{0}{ }^{\prime}+\mathrm{Q}_{1}{ }^{\prime} \mathrm{Q}_{0} \mathrm{E} \\
& =\mathrm{Q}_{1}\left(\mathrm{E}^{\prime}+\mathrm{Q}_{0}{ }^{\prime}\right)+\mathrm{Q}_{1}^{\prime} \mathrm{Q}_{0} \mathrm{E} \\
& =\mathrm{Q}_{1}\left(E \mathrm{Q}_{0}\right)^{\prime}+\mathrm{Q}_{1}{ }^{\prime}\left(\mathrm{Q}_{0} \mathrm{E}\right) \\
& =\mathrm{Q}_{1} \oplus\left(E Q_{0}\right)
\end{aligned}
$$

Step 5: Next-state and output equations. Use K-maps.

| input E | $\begin{gathered} \text { present } \\ \mathrm{Q}_{1} \mathrm{Q}_{0} \end{gathered}$ | $\begin{gathered} \text { next } \\ \mathrm{Q}_{1} \mathrm{Q}_{0} \end{gathered}$ | output Y | E ${ }^{\text {Q }}$ |  | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 00 | 00 | 0 | 0 |  |  |  |  |
| 0 | $\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}$ | $\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}$ | 0 | 1 |  |  | 1 |  |
| 0 | 11 | 11 | 0 |  |  |  |  |  |
| 1 | 00 | $0 \quad 1$ | 0 |  | $\mathrm{Y}=\mathrm{E} \mathrm{Q}_{1} \mathrm{Q}_{0}$ |  |  |  |
| 1 | 01 | 10 | 0 |  |  |  |  |  |
| 1 | 10 | 11 | 0 |  |  |  |  |  |
| 1 | 11 |  | 1 |  |  |  |  |  |

Mealy FSM $\rightarrow$\begin{tabular}{|l|}
\multicolumn{1}{l}{ summary } <br>

| $Q_{0}{ }^{\text {next }}=\mathrm{E} \oplus \mathrm{Q}_{0}$ |
| :--- |
| $Q_{1}{ }^{\text {next }}=Q_{1} \oplus\left(E Q_{0}\right)=Q_{1} E^{\prime}+\left(Q_{1} \oplus Q_{0}\right) E$ |
| $Y=E Q_{1} Q_{0}$ | <br>

\hline
\end{tabular}

equivalent form

$$
\mathrm{Q}_{1}{ }^{\text {next }}=\mathrm{Q}_{1} \oplus\left(\mathrm{EQ}_{0}\right)=\mathrm{Q}_{1} \mathrm{E}^{\prime}+\left(\mathrm{Q}_{1} \oplus \mathrm{Q}_{0}\right) \mathrm{E}
$$

proof:

$$
\begin{aligned}
& \mathrm{Q}_{1}{ }^{\text {next }}=\mathrm{Q}_{1} \oplus\left(\mathrm{EQ}_{0}\right)=\mathrm{Q}_{1}\left(\mathrm{E} \mathrm{Q}_{0}\right)^{\prime}+\mathrm{Q}_{1}{ }^{\prime}\left(\mathrm{Q}_{0} \mathrm{E}\right) \\
& =\mathrm{Q}_{1}\left(\mathrm{E}^{\prime}+\mathrm{Q}_{0}{ }^{\prime}\right)+\mathrm{Q}_{1}{ }^{\prime} \mathrm{Q}_{0} \mathrm{E} \\
& =\mathrm{Q}_{1} \mathrm{E}^{\prime}+\mathrm{Q}_{1} \mathrm{Q}_{0}{ }^{\prime}+\mathrm{Q}_{1}{ }^{\prime} \mathrm{Q}_{0} \mathrm{E} \\
& =\mathrm{Q}_{1} \mathrm{E}^{\prime}+\mathrm{Q}_{1} \mathrm{Q}_{0}{ }^{\prime}\left(\mathrm{E}+\mathrm{E}^{\prime}\right)+\mathrm{Q}_{1}{ }^{\prime} \mathrm{Q}_{0} \mathrm{E} \\
& =\left(\mathrm{Q}_{1}+\mathrm{Q}_{1} \mathrm{Q}_{0}{ }^{\prime}\right) \mathrm{E}^{\prime}+\left(\mathrm{Q}_{1} \mathrm{Q}_{0}{ }^{\prime}+\mathrm{Q}_{1}{ }^{\prime} \mathrm{Q}_{0}\right) \mathrm{E} \\
& =\mathrm{Q}_{1}\left(1+\mathrm{Q}_{0}{ }^{\prime}\right) \mathrm{E}^{\prime}+\left(\mathrm{Q}_{1} \oplus \mathrm{Q}_{0}\right) \mathrm{E} \\
& =\mathrm{Q}_{1} \mathrm{E}^{\prime}+\left(\mathrm{Q}_{1} \oplus \mathrm{Q}_{0}\right) \mathrm{E}
\end{aligned}
$$

Steps 6-8: FSM block diagram. Use two flip flops for the state variables $\mathrm{Q}_{1}, \mathrm{Q}_{0}$


Equivalent realization from Wakerly, Fig. 9-8.


## Another equivalent realization from Wakerly, Fig. 9-11.


using also the $\mathrm{Q}^{\prime}$ outputs of the flip-flops

$$
\begin{aligned}
& D_{0}=E \oplus Q_{0}=E^{\prime} Q_{0}+E Q_{0}^{\prime} \\
& D_{1}=Q_{1} E^{\prime}+\left(Q_{1} \oplus Q_{0}\right) E=Q_{1} E^{\prime}+\left(Q_{1} Q_{0}^{\prime}+Q_{1}^{\prime} Q_{0}\right) E \\
& Y=E Q_{1} Q_{0}
\end{aligned}
$$

Example 2 - Moore FSM version of the 2-bit counter. Define an output, Z, that is independent of the input E and depends only on the current states.


Next-state and output equations for Moore version

| input E | $\begin{gathered} \text { present } \\ \mathrm{Q}_{1} \mathrm{Q}_{0} \end{gathered}$ | $\begin{gathered} \text { next } \\ \mathrm{Q}_{1} \mathrm{Q}_{0} \end{gathered}$ | output Z | E ${ }^{\text {Q }}$ |  | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 00 | 00 | 0 | 0 |  |  | 1 |  |
| 0 | $0 \quad 1$ | 01 | 0 |  |  |  |  |  |
| 0 | 10 | 10 | 0 | 1 |  |  | 1 |  |
| 0 | 11 | 11 | 1 |  |  |  |  |  |
| 1 | 00 | $0 \quad 1$ | 0 | $\mathrm{Z}=\mathrm{Q}_{1} \mathrm{Q}_{0}$ |  |  |  |  |
| 1 | 01 | 10 | 0 |  |  |  |  |  |
| 1 | 10 | 11 | 0 |  | Z is independent of E |  |  |  |
| 1 |  |  | 1 |  |  |  |  |  |

> summary
> $\mathrm{Q}_{0}{ }^{\text {next }}=\mathrm{E} \oplus \mathrm{Q}_{0}$
> $\mathrm{Q}_{1}{ }^{\text {next }}=\mathrm{Q}_{1} \oplus\left(\mathrm{EQ}_{0}\right)=\mathrm{Q}_{1} \mathrm{E}^{\prime}+\left(\mathrm{Q}_{1} \oplus \mathrm{Q}_{0}\right) \mathrm{E}$

Moore $\mathrm{FSM} \rightarrow \mathrm{Z}=\mathrm{Q}_{1} \mathrm{Q}_{0} \quad$ (Moore output)

State diagram. This is a Moore FSM because Z depends only on the current states, Z is indicated inside each state circle, arrows are still labeled by the value of the input causing the transition.


FSM block diagrams - Mealy and Moore versions

$$
\begin{aligned}
& \mathrm{Q}_{0}^{\text {next }}=\mathrm{E} \oplus \mathrm{Q}_{0} \\
& \mathrm{Q}_{1}^{\text {next }}=\mathrm{Q}_{1} \oplus\left(\mathrm{EQ}_{0}\right) \\
& \mathrm{Y}=\mathrm{E} \mathrm{Q}_{1} \mathrm{Q}_{0} \quad \text { (Mealy output) } \\
& \mathrm{Z}=\mathrm{Q}_{1} \mathrm{Q}_{0} \quad \text { (Moore output) }
\end{aligned}
$$



$$
\begin{array}{l|ll}
\text { timing diagram } & \mathrm{Q}_{0}{ }^{\text {next }}=\mathrm{E} \oplus \mathrm{Q}_{0} \\
& \mathrm{Q}_{1}{ }^{\text {next }}=\mathrm{Q}_{1} \oplus\left(\mathrm{EQ}_{0}\right) \\
& \mathrm{Y}=\mathrm{E} \mathrm{Q}_{1} \mathrm{Q}_{0} \quad(\text { (Mealy output }) \\
\left.\mathrm{Z}=\mathrm{Q}_{1} \mathrm{Q}_{0} \quad \text { (Moore output }\right)
\end{array}
$$

Wakerly - Fig. 9-12


## Simulink implementation and timing diagram.


from Simulink file

Simulink implementation and timing diagram.


## Simulink implementation and timing diagram.



Simulink implementation and timing diagram.





Example 3 - Another FSM analysis example from Wakerly, Fig. 9-13.
There are two inputs, $\mathrm{X}, \mathrm{Y}$, three flip-flops (states), $\mathrm{Q}_{2}, \mathrm{Q}_{1}, \mathrm{Q}_{0}$, and two outputs $\mathrm{Z}_{1}, \mathrm{Z}_{2}$. There are 8 states corresponding to the 8 triplets, $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$, and these will be denoted symbolically by the letters, A, B, C, D, E, F, G, H.

Analysis Procedure:

1. The output equations for $\mathrm{Z}_{1}, \mathrm{Z}_{2}$, and the flip-flop excitation equations for the flip-flop inputs, $\mathrm{D}_{2}, \mathrm{D}_{1}, \mathrm{D}_{0}$, are read off from the logic diagram.
2. These become the transition equations for the next states, $\mathrm{Q}_{2}{ }^{\text {next }}, \mathrm{Q}_{1}{ }^{\text {next }}, \mathrm{Q}_{0}{ }^{\text {next }}$, denoted in Wakerly with the notation, $\mathrm{Q}_{2}{ }^{*}, \mathrm{Q}_{1}{ }^{*}, \mathrm{Q}_{0}{ }^{*}$.
3. The state-table can the be evaluated for all possible valuations of the inputs and the states, and then, converted into a more readable version using the symbolic state letter-names.
4. Finally, a state diagram is drawn, using a slightly different and more efficient drawing convention in this example.

Wakerly, Fig. 9-13. A State Machine with Three Flip-Flops and Eight States


Example 3

$$
\begin{aligned}
& \mathrm{D}_{0}=\mathrm{Q}_{1}{ }^{\prime} \mathrm{X}+\mathrm{Q}_{0} \mathrm{X}^{\prime}+\mathrm{Q}_{2} \\
& \mathrm{D}_{1}=\mathrm{Q}_{2}^{\prime} \mathrm{Q}_{0} \mathrm{X}+\mathrm{Q}_{1} \mathrm{X}^{\prime}+\mathrm{Q}_{2} \mathrm{Q}_{1} \\
& \mathrm{D}_{2}=\mathrm{Q}_{2} \mathrm{Q}_{0}{ }^{\prime}+\mathrm{Q}_{0}{ }^{\prime} \mathrm{X}^{\prime} \mathrm{Y} \\
& \\
& \\
& \\
& \mathrm{Q}_{0}{ }^{\text {next }}=\mathrm{Q}_{1}{ }^{\prime} \mathrm{X}+\mathrm{Q}_{0} \mathrm{X}^{\prime}+\mathrm{Q}_{2} \\
& \mathrm{Q}_{1}{ }^{\text {next }}=\mathrm{Q}_{2}{ }^{\prime} \mathrm{Q}_{0} \mathrm{X}+\mathrm{Q}_{1} \mathrm{X}^{\prime}+\mathrm{Q}_{2} \mathrm{Q}_{1} \\
& \mathrm{Q}_{2}{ }^{\text {next }}=\mathrm{Q}_{2} \mathrm{Q}_{0}{ }^{\prime}+\mathrm{Q}_{0}{ }^{\prime} \mathrm{X}^{\prime} \mathrm{Y}
\end{aligned}
$$

flip-flop excitation equations

$$
\begin{aligned}
& \mathrm{Z}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{1}^{\prime}+\mathrm{Q}_{0}^{\prime} \\
& \mathrm{Z}_{2}=\mathrm{Q}_{2} \mathrm{Q}_{1}+\mathrm{Q}_{2} \mathrm{Q}_{0}^{\prime}
\end{aligned}
$$

state table
$X Y$

| Q2 Q1Q0 | $\mathbf{0 0}$ | 01 | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\boldsymbol{Z 1 Z 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | 000 | 100 | 001 | 001 | 10 |
| 001 | 001 | 001 | 011 | 011 | 10 |
| 010 | 010 | 110 | 000 | 000 | 10 |
| 011 | 011 | 011 | 010 | 010 | 00 |
| 100 | 101 | 101 | 101 | 101 | 11 |
| 101 | 001 | 001 | 001 | 001 | 10 |
| 110 | 111 | 111 | 111 | 111 | 11 |
| 111 | 011 | 011 | 011 | 011 | 11 |
|  | Q2* Q1* Q0* |  |  |  |  |

symbolic state table

| $X \boldsymbol{Y}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $s$ | $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\boldsymbol{z 1 Z 2}$ |
| A | A | E | B | B | 10 |
| B | B | B | D | D | 10 |
| C | C | G | A | A | 10 |
| D | D | D | C | C | 00 |
| E | F | F | F | F | 11 |
| F | B | B | B | B | 10 |
| G | H | H | H | H | 11 |
| H | D | D | D | D | 11 |
|  | S* |  |  |  |  |


FSM - analysis / synthesis / design steps - Summary

1. Start with verbal description and choose states and the reset state.
2. Convert the verbal description into a state diagram.
3. Convert the state diagram into a state table.
4. Encode the symbolic states with D-flip-flop state variables.
5. Derive the next-state and output equations in terms of state variables.
6. Implement the design using D-flip-flops and logic gates.
7. Simulate it with Simulink or HDL to verify proper operation.


Example 4 - Sequence recognizer - Moore version. It is desired to design an FSM to detect the particular sequence of three or more consecutive ones, 111, in an incoming input stream X of 0 s and 1 s , measured at the positive edges of the clock signal. At each time instant, upon detecting three ones in the three immediately preceding time instants, the FSM should produce an output, $\mathrm{Y}=1$, otherwise, it should output, $\mathrm{Y}=0$. All changes should occur at the positive edges of the clock signal.

To put this in some context, one can think of a car cruise control system in which the speed is sampled at regular clock-edge time instants, and an indicator binary signal X indicates whether the speed is within acceptable limits ( $X=0$ ), or, that the speed has become too excessive $(X=1)$, and in that case, a control signal, $\mathrm{Y}=1$, must be asserted to cause the car to slow down to the acceptable range. The control signal should remain at $\mathrm{Y}=0$ while the speed is within the acceptable range.

Thus, the design requirement is that when the speed is measured to be excessive ( $\mathrm{X}=1$ ) in three consecutive time instants, a control action must be taken to slow the car down, otherwise, no action is required.
[ cf. Brown \& Vranesic ]
example input signal and output
clock edge: $\begin{array}{lllllllllllllllll}t_{0} & t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6} & t_{7} & t_{8} & t_{9} & t_{10} & t_{11} & t_{12} & t_{13} & t_{14} & t_{15}\end{array}$

output Y: $0 \begin{array}{lllllllllllllllll} & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0\end{array}$


| three consecutive 1 s at $t_{10}, t_{11}, t_{12}$ |
| :---: |
| will cause an output $\mathrm{Y}=1$ |
| at the next clock edge $t_{13}$ |
| continuing with another |
| set of three 1 s at $t_{11}, t_{12}, t_{13}$ |
| will cause another output $\mathrm{Y}=1$ |
| at the next clock edge $t_{14}$ |

example input signal, state transition, and output
clock edge: $\begin{array}{lllllllllllllllll}0 & t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6} & t_{7} & t_{8} & t_{9} & t_{10} & t_{11} & t_{12} & t_{13} & t_{14} & t_{15}\end{array}$ input X: 00 state: $\begin{array}{llllllllllllllll}\mathrm{S}_{0} & \mathrm{~S}_{0} & \mathrm{~S}_{1} & \mathrm{~S}_{0} & \mathrm{~S}_{1} & \mathrm{~S}_{2} & \mathrm{~S}_{3} & \mathrm{~S}_{0} & \mathrm{~S}_{1} & \mathrm{~S}_{2} & \mathrm{~S}_{0} & \mathrm{~S}_{1} & \mathrm{~S}_{2} & \mathrm{~S}_{3} & \mathrm{~S}_{3} & \mathrm{~S}_{0}\end{array}$


based on the current X , state transitions take place at the next active clock


| state table | present | next <br> state |  | output <br> state |  |
| ---: | :---: | :---: | :---: | :---: | :---: |
| Moore FSM |  | $\mathrm{X}=0$ | $\mathrm{X}=1$ |  |  |
|  |  | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ | 0 |  |
|  |  |  | 0 |  |  |
|  |  | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{2}$ | 0 |  |
|  |  | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{3}$ | 0 |  |
| $\mathrm{~S}_{3}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{3}$ | 1 |  |  |

## Moore FSM - state table

compact form

| present <br> state | next <br> state | output <br> Y |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{S}_{0}$ | $\mathrm{X}=0$ | $\mathrm{X}=1$ |  |
|  | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ | 0 |
|  | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{2}$ | 0 |
|  | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{3}$ | 0 |
| $\mathrm{~S}_{3}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{3}$ | 1 |


| conventional form |  |  |  |
| :---: | :---: | :---: | :---: |
| X | present <br> state | next <br> state | Y |
| 0 | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{0}$ | 0 |
| 0 | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{0}$ | 0 |
| 0 | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{0}$ | 0 |
| 0 | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{0}$ | 1 |
| 1 | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ | 0 |
| 1 | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | 0 |
| 1 | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | 0 |
| 1 | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{3}$ | 1 |

State assignment. With $\mathrm{N}=4$ states, we need, $\mathrm{n}=$ ceiling $\left(\log _{2} \mathrm{~N}\right)=2$, state variables, say, $\mathrm{A}, \mathrm{B}$, and two D flip-flops, with inputs, say, $\mathrm{D}_{\mathrm{A}}, \mathrm{D}_{\mathrm{B}}$.

The overall system will be as shown below.


State encoding. With two state variables, say, A,B, we have two options for state encoding, i.e., associating A,B with the four states, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$,
(1) plain binary, or,
(2) Gray coding

First, consider plain binary, and re-write the state table in conventional form.

Moore FSM - state table

|  | present |  |  | next |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | state | A | B | state | A | B | Y |
| 0 | $\mathrm{~S}_{0}$ | 0 | 0 | $\mathrm{~S}_{0}$ | 0 | 0 | 0 |
| 0 | $\mathrm{~S}_{1}$ | 0 | 1 | $\mathrm{~S}_{0}$ | 0 | 0 | 0 |
| 0 | $\mathrm{~S}_{2}$ | 1 | 0 | $\mathrm{~S}_{0}$ | 0 | 0 | 0 |
| 0 | $\mathrm{~S}_{3}$ | 1 | 1 | $\mathrm{~S}_{0}$ | 0 | 0 | 1 |
| 1 | $\mathrm{~S}_{0}$ | 0 | 0 | $\mathrm{~S}_{1}$ | 0 | 1 | 0 |
| 1 | $\mathrm{~S}_{1}$ | 0 | 1 | $\mathrm{~S}_{2}$ | 1 | 0 | 0 |
| 1 | $\mathrm{~S}_{2}$ | 1 | 0 | $\mathrm{~S}_{3}$ | 1 | 1 | 0 |
| 1 | $\mathrm{~S}_{3}$ | 1 | 1 | $\mathrm{~S}_{3}$ | 1 | 1 | 1 |

binary encoding

$$
\begin{aligned}
& \text { A B } \\
& \mathrm{S}_{0} \equiv 00 \\
& \mathrm{~S}_{1} \equiv 01 \\
& \mathrm{~S}_{2} \equiv 10 \\
& \mathrm{~S}_{3} \equiv 11
\end{aligned}
$$

Moore FSM - binary encoding


## Moore FSM realization binary encoding

$$
\begin{aligned}
& D_{A}=A^{\text {next }}=X(A+B) \\
& D_{B}=B^{\text {next }}=X\left(A+B^{\prime}\right) \\
& Y=A B \quad(\text { Moore output })
\end{aligned}
$$



## Simulink implementation and timing diagram



$$
\begin{aligned}
& D_{A}=A^{\text {next }}=X(A+B) \\
& D_{B}=B^{\text {next }}=X\left(A+B^{\prime}\right) \\
& Y=A B \quad(\text { Moore output })
\end{aligned}
$$



Example 4

## scope \& data export sub-function



Example 4

## signal builder - input X



Example 4

scope output

## timing diagram

$$
\begin{aligned}
& t \text {, clock periods }
\end{aligned}
$$

## timing diagram

```
% MATLAB code for generating the timing diagram
% with data imported from the Simulink structure S
t = S.time; % time
P = S.data(:,1); % clock pulse
A = S.data(:,2);
B = S.data(:,3);
X = S.data(:,4);
Y = S.data(:,5);
figure;
subplot(5,1,1); stairs(t,P, 'g-','linewidth',2);
subplot(5,1,2); stairs(t,A, 'm-','linewidth',2);
subplot(5,1,3); stairs(t,B, 'm-','linewidth',2);
subplot(5,1,4); stairs(t,X, 'b-','linewidth',2);
subplot(5,1,5); stairs(t,Y, 'r-','linewidth',2);
xlabel('{\itt}, clock periods')
```

State encoding. Next, consider Gray encoding, and re-write the state table in conventional form.

Moore FSM - state table

|  | present |  |  | next |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | state | A | B | state |  | A | B |
| 0 | $\mathrm{~S}_{0}$ | 0 | 0 | $\mathrm{~S}_{0}$ | 0 | 0 | 0 |
| 0 | $\mathrm{~S}_{1}$ | 0 | 1 | $\mathrm{~S}_{0}$ | 0 | 0 | 0 |
| 0 | $\mathrm{~S}_{2}$ | 1 | 1 | $\mathrm{~S}_{0}$ | 0 | 0 | 0 |
| 0 | $\mathrm{~S}_{3}$ | 1 | 0 | $\mathrm{~S}_{0}$ | 0 | 0 | 1 |
| 1 | $\mathrm{~S}_{0}$ | 0 | 0 | $\mathrm{~S}_{1}$ | 0 | 1 | 0 |
| 1 | $\mathrm{~S}_{1}$ | 0 | 1 | $\mathrm{~S}_{2}$ | 1 | 1 | 0 |
| 1 | $\mathrm{~S}_{2}$ | 1 | 1 | $\mathrm{~S}_{3}$ | 1 | 0 | 0 |
| 1 | $\mathrm{~S}_{3}$ | 1 | 0 | $\mathrm{~S}_{3}$ | 1 | 0 | 1 |

$$
\begin{aligned}
& \text { Gray encoding } \\
& \begin{array}{l}
\text { A } \quad \text { B } \\
\mathrm{S}_{0} \equiv 0
\end{array} \quad 0 \\
& \mathrm{~S}_{1} \equiv 0
\end{aligned}
$$

Moore FSM - Gray encoding


## Moore FSM realization

Gray encoding

$$
\begin{aligned}
& D_{A}=A^{\text {next }}=X(A+B) \\
& D_{B}=B^{\text {next }}=X^{\prime} \\
& Y=A^{\prime} \quad(\text { Moore output })
\end{aligned}
$$



$$
\begin{aligned}
& D_{A}=A^{\text {next }}=\mathrm{X}(\mathrm{~A}+\mathrm{B}) \\
& \mathrm{D}_{\mathrm{B}}=\mathrm{B}^{\text {next }}=\mathrm{XA}^{\prime} \\
& \mathrm{Y}=\mathrm{AB}^{\prime} \quad(\text { Moore output })
\end{aligned}
$$




$$
\begin{aligned}
& D_{A}=A^{\text {next }}=X(A+B) \\
& D_{B}=B^{\text {next }}=X^{\prime} \\
& Y=A B^{\prime} \quad(\text { Moore output })
\end{aligned}
$$


scope output

## Moore FSM - timing diagram





$$
\begin{gathered}
\begin{array}{c}
1 \\
0
\end{array} \begin{array}{ccccccccccc|c|ccccccc}
\hline & 1 & 0 & 1 & 1 & 1 & 0 & 1, & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16
\end{array}
\end{gathered}
$$ $t$, clock periods

## Moore FSM - timing diagram

## binary encoding



$$
\begin{aligned}
& D_{A}=A^{\text {next }}=X(A+B) \\
& D_{B}=B^{\text {next }}=X\left(A+B^{\prime}\right) \\
& Y=A B \quad(\text { Moore output })
\end{aligned}
$$



$$
\begin{aligned}
& D_{A}=A^{\text {next }}=X(A+B) \\
& D_{B}=B^{\text {next }}=X A^{\prime} \\
& Y=A B^{\prime} \quad(\text { Moore output })
\end{aligned}
$$

Example 5 - Sequence (111) recognizer - Mealy version. It is desired to design a Mealy FSM for the previous example. In the previous Moore version, the output was, $\mathrm{Y}=1$, in the clock cycle that follows the observation of a third consecutive $\mathrm{X}=1$.

In the present Mealy version, we require that $\mathrm{Y}=1$ in the same clock cycle when the third occurrence of $\mathrm{X}=1$ is observed.

This requirement makes Y dependent on both the input and the present state, hence, a Mealy machine.
(When a third $\mathrm{X}=1$ is observed, the output Y is not instantaneously set equal to $\mathrm{Y}=1$, but it requires a small delay, which we will ignore in the present discussion.)
example input signal and output
clock edge: $\begin{array}{lllllllllllllllll}t_{0} & t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6} & t_{7} & t_{8} & t_{9} & t_{10} & t_{11} & t_{12} & t_{13} & t_{14} & t_{15}\end{array}$

output Y: $0 \begin{array}{lllllllllllllllll} & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0\end{array}$

example input signal, state transition, and output
clock edge: $\begin{array}{llllllllllllllll}0 & t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6} & t_{7} & t_{8} & t_{9} & t_{10} & t_{11} & t_{12} & t_{13} & t_{14} & t_{15}\end{array}$ input X: $00 \begin{array}{lllllllllllllll} & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0\end{array}$ state: $\begin{array}{lllllllllllllllll}\mathrm{S}_{0} & \mathrm{~S}_{0} & \mathrm{~S}_{1} & \mathrm{~S}_{0} & \mathrm{~S}_{1} & \mathrm{~S}_{2} & \mathrm{~S}_{2} & \mathrm{~S}_{0} & \mathrm{~S}_{1} & \mathrm{~S}_{2} & \mathrm{~S}_{0} & \mathrm{~S}_{1} & \mathrm{~S}_{2} & \mathrm{~S}_{2} & \mathrm{~S}_{2} & \mathrm{~S}_{0}\end{array}$


state transitions take place at the next active clock, but $\mathrm{X}, \mathrm{Y}$ are at the present cycle


| state table | present <br> state | next state |  | output Y |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{X}=0$ |  | $\mathrm{X}=0$ |  |
|  | $\mathrm{S}_{0}$ | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | 0 | 0 |
|  | $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ |  | 0 | 0 |
|  | $\mathrm{S}_{2}$ | $\mathrm{S}_{0}$ | $\mathrm{S}_{2}$ | 0 | 1 |

## Mealy FSM - state table

| compact form |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| present <br> state | next <br> state |  | output Y |  |
|  | $\mathrm{X}=0$ | $\mathrm{X}=1$ | $\mathrm{X}=0$ | $\mathrm{X}=1$ |
| $\mathrm{S}_{0}$ |  | $\mathrm{S}_{1}$ | 0 | 0 |
| $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ | $\mathrm{S}_{2}$ | 0 | 0 |
| $\mathrm{S}_{2}$ | $\mathrm{S}_{0}$ | $\mathrm{S}_{2}$ | 0 | 1 |

conventional form

| X | present <br> state | next <br> state | Y |
| :---: | :---: | :---: | :---: |
| 0 | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{0}$ | 0 |
| 0 | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{0}$ | 0 |
| 0 | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{0}$ | 0 |
| 1 | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ | 0 |
| 1 | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | 0 |
| 1 | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{2}$ | 1 |

State assignment. With $\mathrm{N}=3$ states, we need,

$$
\mathrm{n}=\operatorname{ceiling}\left(\log _{2} \mathrm{~N}\right)=\operatorname{ceiling}\left(\log _{2} 3\right)=\operatorname{ceiling}(1.5850)=2,
$$

state variables, say, $A, B$, and two $D$ flip-flops, with inputs, say, $D_{A}, D_{B}$.
The overall system will be as shown below.


State encoding. With two state variables, say, A,B, we have two options for state encoding, associating A,B with the three states, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$,
(1) plain binary, or,
(2) Gray coding

We will use Gray coding with don't care entries for the unused pair, and re-write the state table in conventional form.

Mealy FSM - state table


Mealy FSM - state table

|  | present |  | next |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| X | A | B | A | B | Y |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | x | X | x |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | x | x | x |


Y = X A (Mealy output)


Mealy FSM - full state table


Mealy FSM - full state table

| $A$ |  |  | next |  |
| :--- | :--- | :--- | :--- | :--- |
| A | B | X | A | B | Y

1,0 are unused states since they do not appear as next states, thus, they can be removed, or treated as don't care entries

```
\([a, b, x]=a 2 d(0: 7,3)\);
\(\mathrm{da}=\mathrm{x} \& \mathrm{~b}\);
\(\mathrm{db}=\mathrm{x}\);
\(y=x \& a ;\)
[a,b,x,da,db,y]
\(\begin{array}{lllllll}\circ & \mathrm{a} & \mathrm{b} & \mathrm{x} & \mathrm{da} & \mathrm{db} & \mathrm{y} \\ \% & 0 & 0 & 0 & 0 & 0 & 0 \\ \% & 0 & 0 & 1 & 0 & 1 & 0\end{array}\)
\(\begin{array}{lllllll}\circ & 0 & 1 & 0 & 0 & 0 & 0 \\ \% & 0 & 1 & 1 & 1 & 1 & 0\end{array}\)
\(\begin{array}{lllllll}\circ & 1 & 0 & 0 & 0 & 0 & 0 \\ \% & 1 & 0 & 1 & 0 & 1 & 1\end{array}\)
\(\begin{array}{lllllll}\circ & 1 & 1 & 0 & 0 & 0 & 0 \\ \% & 1 & 1 & 1 & 1 & 1 & 1\end{array}\)
```

$$
\begin{aligned}
& D_{A}=A^{\text {next }}=X B \\
& D_{B}=B^{\text {next }}=X \\
& Y=X A \quad(\text { Mealy output })
\end{aligned}
$$

## Mealy FSM realization Gray encoding

$$
\begin{aligned}
& D_{A}=A^{\text {next }}=X B \\
& D_{B}=B^{\text {next }}=X \\
& Y=X A \quad \text { (Mealy output })
\end{aligned}
$$



## Simulink implementation and timing diagram

$$
\begin{aligned}
& D_{A}=A^{\text {next }}=X B \\
& D_{B}=B^{\text {next }}=X \\
& Y=X A \quad \text { (Mealy output })
\end{aligned}
$$




scope output

## Mealy FSM - timing diagram

$$
\begin{aligned}
& t \text {, clock periods }
\end{aligned}
$$

## Mealy - Gray encoding



$$
\begin{aligned}
& D_{A}=A^{\text {next }}=X B \\
& D_{B}=B^{\text {next }}=X \\
& Y=X A \quad \text { (Mealy output })
\end{aligned}
$$

## Moore - Gray encoding



$$
\begin{aligned}
& D_{A}=A^{\text {next }}=X(A+B) \\
& D_{B}=B^{\text {next }}=X A^{\prime} \\
& Y=A B^{\prime} \quad(\text { Moore output })
\end{aligned}
$$

Example 6 - Another sequence recognizer - Mealy version. It is desired to design a Mealy FSM circuit to detect the particular sequence of consecutive bits, 1101, in an incoming input stream X of zeros and ones, measured at the positive edges of the clock signal.

At each time instant, upon detecting the pattern 110 in the previous three inputs, and the current input is $\mathrm{X}=1$, then, the FSM should produce an output, $\mathrm{Y}=1$, otherwise, it should produce, $\mathrm{Y}=0$.

We may assume also that there is a Reset input that initially resets all states to zero.
[ cf. Mano, Kime, Martin ]

The number of required states can be determined by imagining the following successive sequence of occurrences of input bits:

$$
\underline{\text { reset }} \rightarrow \underline{1} \rightarrow \underline{11} \rightarrow \underline{110}
$$

Thus, we may use 4 states, denoted symbolically as, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2} . \mathrm{S}_{3}$.


|  | present | next state |  | output Y |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{X}=0$ |  | $\mathrm{X}=1$ | $\mathrm{X}=0$ |
| $\mathrm{X}=1$ |  |  |  |  |  |
|  | state table | $\mathrm{S}_{0}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ | 0 |

State assignment. With $\mathrm{N}=4$ states, we need, $\mathrm{n}=$ ceiling $\left(\log _{2} \mathrm{~N}\right)=2$, state variables, say, $\mathrm{A}, \mathrm{B}$, and two D flip-flops, with inputs, say, $\mathrm{D}_{\mathrm{A}}, \mathrm{D}_{\mathrm{B}}$.

The overall system will be as shown below.


State encoding. With two state variables, say, $\mathrm{A}, \mathrm{B}$, we have two options for state encoding, associating A,B with the 4 states, $S_{0}, S_{1}, S_{2}, S_{3}$,
(1) plain binary, or,
(2) Gray encoding

We will start with Gray encoding and rewrite the state table in terms of the state variables A, B.

Mealy FSM - state table

| present <br> states | next states <br> $\mathrm{A}^{\text {next }}$ |  |  | $\mathrm{B}^{\text {next }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Gray encoding

$$
\begin{aligned}
& \quad \begin{array}{ll}
\mathrm{A} & \mathrm{~B} \\
\mathrm{~S}_{0} \equiv 0 & 0 \\
\mathrm{~S}_{1} \equiv 0 & 1 \\
\mathrm{~S}_{2} \equiv 1 & 1 \\
\mathrm{~S}_{3} \equiv 1 & 0
\end{array}, ~
\end{aligned}
$$

| Mealy FSM - state table |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| present <br> states | next states $A^{\text {next }} B^{\text {next }}$ |  | output Y |  |
| A B | $\mathrm{X}=0$ | $\mathrm{X}=1$ | $\mathrm{X}=0$ | $\mathrm{X}=1$ |
| $\mathrm{S}_{0} 00$ | $\mathrm{S}_{0} 00$ | $\mathrm{S}_{1} 01$ | 0 | 0 |
| $\mathrm{S}_{1} 01$ | $\mathrm{S}_{0} 00$ | $\mathrm{S}_{2} 11$ | 0 | 0 |
| $\mathrm{S}_{2} 11$ | $\mathrm{S}_{3} 10$ | $\mathrm{S}_{2} 11$ | 0 | 0 |
| $\mathrm{S}_{3} 10$ | $\mathrm{S}_{0} 00$ | $\mathrm{S}_{1} 01$ | 0 | 1 |


| ${ }^{\text {AB }}$ |  |  |  |
| :---: | :---: | :---: | :---: |
|  | 0 | 11 | 10 |
| 0 |  | 1 |  |
| 1 | 1 | 1 |  |

$$
\mathrm{D}_{\mathrm{A}}=\mathrm{A}^{\text {next }}=\mathrm{XB}+\mathrm{AB}
$$



$$
\mathrm{Y}=\mathrm{XAB} \mathrm{~B}^{\prime}
$$



$$
\mathrm{D}_{\mathrm{B}}=\mathrm{B}^{\text {next }}=\mathrm{X}
$$

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{A}}=\mathrm{A}^{\text {next }}=(\mathrm{X}+\mathrm{A}) \mathrm{B} \\
& \mathrm{D}_{\mathrm{B}}=\mathrm{B}^{\text {next }}=\mathrm{X} \\
& \mathrm{Y}=\mathrm{XABB}^{\prime}
\end{aligned}
$$



## Simulink implementation



$$
\begin{aligned}
& \mathrm{D}_{\mathrm{A}}=\mathrm{A}^{\text {next }}=(\mathrm{X}+\mathrm{A}) \mathrm{B} \\
& \mathrm{D}_{\mathrm{B}}=\mathrm{B}^{\text {next }}=\mathrm{X} \\
& \mathrm{Y}=\mathrm{XAB}^{\prime}
\end{aligned}
$$


why is this necessary?

## signal builder - input X



## sequence recognizer - 1101 - Mealy version - Gray encoding



State encoding. With plain binary encoding, we obtain a more complex realization, requiring more gates.


## sequence recognizer - 1101 - Mealy version - binary encoding




 $t$, clock periods

Example 7 - Sequence recognizer - 1101 - Moore version. Here, we summarize without derivations the Moore version of the previous example.

The number of required states is five, corresponding to the sequence of occurrences of input bits:

$$
\underline{\text { reset }} \rightarrow \underline{1} \rightarrow \underline{11} \rightarrow \underline{110} \rightarrow \underline{1101}
$$

We may denote the states symbolically as, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$. Thus, we will need three flip-flops, A, B, C, and may use (partial) Gray encoding.

| state table | present <br> state | next <br> state | output Y | state encoding |
| :---: | :---: | :---: | :---: | :---: |
| Moore FSM |  | $\mathrm{X}=0 \quad \mathrm{X}=1$ |  | $\mathrm{S}_{0} \equiv 000$ |
|  | $\mathrm{S}_{0}$ | $\mathrm{S}_{0} \quad \mathrm{~S}_{1}$ | 0 | $\mathrm{S}_{1} \equiv 001$ |
|  | $\mathrm{S}_{1}$ | $S_{0} \quad S_{2}$ | 0 | $\mathrm{S}_{2} \equiv 011$ |
|  | $\mathrm{S}_{2}$ | $S_{3} \quad S_{2}$ | 0 | $\mathrm{S}_{3} \equiv 010$ |
|  | $\mathrm{S}_{3}$ | $\mathrm{S}_{0} \quad \mathrm{~S}_{4}$ | 0 | $\mathrm{S}_{4} \equiv 100$ |
|  | $\mathrm{S}_{4}$ | $S_{0} \quad S_{2}$ | 1 |  |





## Simulink implementation

seq $=1101$
Moore - Gray encoding


$$
\begin{aligned}
& D_{A}=A^{\text {next }}=B^{\prime} C^{\prime} X \\
& D_{B}=B^{\text {next }}=C X+A X+B C \\
& D_{C}=C^{\text {next }}=C X+B^{\prime} X \\
& Y=A
\end{aligned}
$$




## sequence recognizer - 1101 - Moore version

$$
\begin{aligned}
& \text { ص } \begin{array}{c}
1: \\
0 \\
0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& t \text {, clock periods }
\end{aligned}
$$

## Mealy vs. Moore







$$
\begin{aligned}
& D_{A}=A^{\text {next }}=B^{\prime} C^{\prime} X \\
& D_{B}=B^{\text {next }}=C X+A X+B C \\
& D_{C}=C^{\text {next }}=C X+B^{\prime} X \\
& Y=A
\end{aligned}
$$

Gray encoding for both cases

## Note on State Assignment

With $n$ flip-flops, there are $2^{n}$ possible $n$-bit patterns, or states. If our FSM only needs $k$ coded states, (with $k \leq 2^{n}$ ), then, the number of different ways to choose such $k$ coded states from the $2^{n}$ available ones is given by the binomial coefficient:

$$
\binom{2^{n}}{k}=\frac{\left(2^{n}\right)!}{k!\left(2^{n}-k\right)!}
$$

Moreover, there are $k$ ! ways (permutations) to assign the chosen $k$ coded $n$-bit states to $k$ symbolic-named states, therefore, the total number of ways to assign $k$ symbolic states to $k, n$-bit patterns is,

$$
\binom{2^{n}}{k} \cdot k!=\frac{\left(2^{n}\right)!}{k!\left(2^{n}-k\right)!} \cdot k!=\frac{\left(2^{n}\right)!}{\left(2^{n}-k\right)!}
$$

For our example, we have $n=3$ and $k=5$, which gives, $2^{n}=8$, and,

$$
\binom{8}{5} \cdot 5!=56 \cdot 120=6720
$$

Example 8 - Yet, another sequence recognizer - Mealy version. It is desired to design a Mealy FSM circuit to detect the particular sequence of consecutive bits, 0001 , in an incoming input stream X of zeros and ones, measured at the positive edges of the clock signal.

At each time instant, upon detecting the pattern 000 in the previous three inputs, and the current input is $\mathrm{X}=1$, then, the FSM should produce an output, $\mathrm{Y}=1$, otherwise, it should produce, $\mathrm{Y}=0$.

Based on the above description, determine: (a) the state diagram, (b) state table, (c) state assignment with both Gray and binary encodings, (d) next-state and output equations, (e) build a realization using D flip-flops, and (f) simulate the operation of the system by sending in the following test sequence of binary inputs and verifying the expected outputs:

$$
\begin{aligned}
& X=\left[\begin{array}{llllllllllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right] \\
& Y
\end{aligned}=\left[\begin{array}{lllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

only incomplete answers are given below.


|  | present | next state |  | output Y |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{X}=0$ |  | $\mathrm{X}=1$ | $\mathrm{X}=0$ |
| $\mathrm{X}=1$ |  |  |  |  |  |
|  | state table | $\mathrm{S}_{1}$ | $\mathrm{~S}_{0}$ | 0 | 0 |
| Mealy FSM | $\mathrm{S}_{0}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{0}$ | 0 |
|  | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{0}$ | 0 | 0 |
|  | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{0}$ | 0 | 1 |

State assignment. With $\mathrm{N}=4$ states, we need, $\mathrm{n}=$ ceiling $\left(\log _{2} \mathrm{~N}\right)=2$, state variables, say, $\mathrm{A}, \mathrm{B}$, and two D flip-flops, with inputs, say, $\mathrm{D}_{\mathrm{A}}, \mathrm{D}_{\mathrm{B}}$.

The overall system will be as shown below.


State encoding. Using K-maps, show the following next-state and output equations for the cases of plain binary and Gray encodings.

$$
\begin{aligned}
& D_{A}=A^{\text {next }}=X^{\prime}(A+B) \\
& D_{B}=B^{\text {next }}=X^{\prime}\left(A+B^{\prime}\right) \\
& Y=X A B
\end{aligned}
$$

binary encoding
binary encoding

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { A B B } \\
\mathrm{S}_{0} \equiv 0 \\
\mathrm{~S}_{1} \equiv 0 \\
\mathrm{~S}_{2} \equiv 1 \\
\mathrm{~S}_{3} \equiv 1 \\
1
\end{array} \\
& \hline 1
\end{aligned}
$$

## Gray encoding

$$
\begin{aligned}
& \quad \begin{array}{l}
\mathrm{A} \\
\mathrm{~S}_{0} \equiv \\
\mathrm{~S}_{1} \equiv 0 \\
\mathrm{~S}_{2} \equiv \\
\mathrm{~S}_{2} \equiv \\
\mathrm{~S}_{3}
\end{array} 1 \\
& \mathrm{~S}_{3} \equiv 10
\end{aligned}
$$

$$
\begin{array}{llllllllllll}
1- \\
0 & 1 & & & & & & & & 1 & & \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\text { lbme.slx }
\end{array}
$$

Example 9 - State reduction. It is often possible to reduce the number of states by identifying redundant states. Consider the following state table of a Mealy FSM, with one input X and one output Y [cf. Kana],

| present | next state |  | output Y |  |
| :--- | :---: | :---: | :---: | :---: |
|  | $\mathrm{X}=0$ | $\mathrm{X}=1$ | $\mathrm{X}=0$ | $\mathrm{X}=1$ |
| $\mathrm{~S}_{0}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | 1 | 0 |
| $\mathrm{~S}_{1}$ | $\mathrm{~S}_{4}$ | $\mathrm{~S}_{2}$ | 0 | 0 |
| $\mathrm{~S}_{2}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{1}$ | 1 | 1 |
| $\mathrm{~S}_{3}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{5}$ | 0 | 1 |
| $\mathrm{~S}_{4}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | 1 | 0 |
| $\mathrm{~S}_{5}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{2}$ | 0 | 0 |$\quad$|  |
| :--- |
| $\mathrm{S}_{0}$ and $\mathrm{S}_{4}$ are equivalent states, <br> can keep $\mathrm{S}_{0}$, and eliminate $\mathrm{S}_{4}$, <br> replacing references to $\mathrm{S}_{4}$ by $\mathrm{S}_{0}$ |

two states are equivalent if they produce the same outputs for the same inputs
note also that if a state does not appear as a next state, then it can be eliminated from the state table and state diagram

| present | next state |  | output Y |  |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{0}$ | $\mathrm{X}=0$ | $\mathrm{X}=1$ | $\mathrm{X}=0$ | $\mathrm{X}=1$ |
|  | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | 1 | 0 |
|  | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{2}$ | 0 | 0 |
| $\mathrm{~S}_{2}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{1}$ | 1 | 1 |
| $\mathrm{~S}_{3}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{5}$ | 0 | 1 |
| $\mathrm{~S}_{5}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{2}$ | 0 | 0 |$\longleftarrow$| kept $\mathrm{S}_{0}$, eliminated $\mathrm{S}_{4}$, |
| :--- |
| replaced $\mathrm{S}_{4}$ by $\mathrm{S}_{0}$ |
| now $\mathrm{S}_{1}$ and $\mathrm{S}_{5}$ are equivalent, |
| so, keep $\mathrm{S}_{1}$, and eliminate $\mathrm{S}_{5}$, |
| replace references to $\mathrm{S}_{5}$ by $\mathrm{S}_{1}$ |


| present | next state |  | output Y |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{0}$ | $\mathrm{X}=0$ | $\mathrm{X}=1$ | $\mathrm{X}=0$ | $\mathrm{X}=1$ |
|  | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | 1 | 0 |
|  | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{2}$ | 0 | 0 |
| $\mathrm{~S}_{2}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{1}$ | 1 | 1 |
| $\mathrm{~S}_{3}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{1}$ | 0 | 1 |

simplified state table, next, assign flip-flop state variables, $\mathrm{A}, \mathrm{B}$, and derive the next-state and output equations

| $\mathrm{x}^{\mathrm{AB}}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 00 | 01 | 11 | 10 |
| 0 | 1 |  | 1 | 1 |
| 1 | 1 | 1 |  |  |
| $\mathrm{A}^{\text {next }}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{XA}^{\prime}+\mathrm{X}^{\prime} \mathrm{A}$ |  |  |  |  |



Example 9


$$
\begin{aligned}
& D_{A}=A^{\text {next }}=A^{\prime} B^{\prime}+X^{\prime}+X^{\prime} A \\
& D_{B}=B^{\text {next }}=X B^{\prime}+X A \\
& Y=A B^{\prime}+X A+X^{\prime} B^{\prime}
\end{aligned}
$$

Example 10 - Electronic keypad lock [cf. Harris \& Harris].
Your DLD classmates give you a two-digit keypad lock as a birthday present, but when you open the box, you discover that instead of user instructions, they have included the following schematic.


You recognize this as a Moore FSM, and you will attempt to analyze it and eventually arrive at a state diagram, which will help you determine the unlocking combination.

The keypad accepts as input X the decimal digits, $0,1,2,3$, and converts them to binary through an $A / D$ converter, that is, each decimal $X=0,1,2,3$ is represented by the bits, $X_{1} X_{0}=00,01,10,11$, so that there are two binary inputs to the FSM. There is also an output, $\mathrm{Y}=\mathrm{A}$, but you don't know its purpose yet, and you suspect it might be the "unlock" signal.
From the block diagram, you determine the next-state and flip-flop excitation equations and output equations:

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{A}}=\mathrm{A}^{\text {next }}=\mathrm{BX}_{1}{ }^{\prime} \mathrm{X}_{0} \\
& \mathrm{D}_{\mathrm{B}}=\mathrm{B}^{\text {next }}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{X}_{1} \mathrm{X}_{0} \\
& \mathrm{Y}=\mathrm{A}
\end{aligned}
$$

Using these equations, you generate a possible state table that includes all possible evaluations of the flip-flop variables $\mathrm{A}, \mathrm{B}$ for all inputs $\mathrm{X}_{1}, \mathrm{X}_{0}$, including also the above next states and output.

| A | B | $\mathrm{X}_{1}$ |  | $\mathrm{A}^{\text {ne }}$ |  | Y | \% MATLAB code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | $[\mathrm{A}, \mathrm{B}, \mathrm{X} 1, \mathrm{X} 0]=\mathrm{a} 2 \mathrm{~d}(0: 15,4)$; |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | Anext $=\mathrm{B}$ \& ( X 1$)$ \& X 0 ; |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 |  |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 | Bnext $=(\sim A) \&(\sim B) \& X 1 \& X 0 ;$ |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | $\mathrm{Y}=\mathrm{A}$; |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 |  |
| 0 | 1 | 1 | 0 | 0 | 0 | 0 | [A, B, X1, X0, Anext, Bnext, Y] |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | Next, carry out state reduction by |
| 1 | 0 | 0 | 1 |  | 0 | 1 | removing unused states, noticing that the |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 | state, $\mathbf{A B}=\mathbf{1 1}$, does not appear as a next |
| 1 | 0 | 1 | 1 | 0 | 0 | 1 | state, so it can be removed, |
| 1 | 1 | 0 | 0 | 0 | 0 | 1 |  |
| 1 | 1 | 0 | 1 | 1 | 0 | 1 | also noticing that the state, $\mathbf{A B}=\mathbf{1 0}$, |
| 1 | 1 | 1 | 0 |  | 0 | 1 | always results in the same next-state, 00 , |
|  | 1 | 1 | 1 |  | 0 | 1 | and the same, output $\mathbf{Y}=\mathbf{1}$, regardless of |
| $\begin{aligned} & \mathrm{D}_{\mathrm{A}}=\mathrm{A}^{\text {next }}=\mathrm{BX}_{1}{ }^{\prime} \mathrm{X}_{0} \\ & \mathrm{D}_{\mathrm{B}}=\mathrm{B}^{\text {next }}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{X}_{1} \mathrm{X}_{0} \end{aligned}$ |  |  |  |  |  |  | the input, so these rows can be combined replacing the inputs by "don't cares". |

reduced state table

| $A$ | $B$ | $X_{1}$ | $X_{0}$ | $A^{\text {next }}$ | $B^{\text {next }}$ | $Y$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | $x$ | $x$ | 0 | 0 | 1 |

Next, carry out state assignment, replacing the state variables A,B using symbolic names, say, $S_{0}, S_{1}, S_{2}$,

|  | A B |
| :--- | :--- |
| $\mathrm{S}_{0}$ | 0 |
| $\mathrm{~S}_{1}$ | 0 |
| $\mathrm{~S}_{2}$ | 1 |
| $\mathrm{~S}_{2}$ | 10 |

and re-write the reduced state table using the symbolic names, and also replace the binary inputs $\mathrm{X}_{1}, \mathrm{X}_{0}$ by their decimal values X

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{A}}=\mathrm{A}^{\mathrm{next}}=\mathrm{BX}_{1}^{\prime} \mathrm{X}_{0} \\
& \mathrm{D}_{\mathrm{B}}=\mathrm{B}^{\text {next }}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{X}_{1} \mathrm{X}_{0} \\
& \mathrm{Y}=\mathrm{A}
\end{aligned}
$$

|  | AB |
| :--- | :--- |
|  | $\mathrm{S}_{0}$ |
| $\mathrm{~S}_{1}$ | 01 |
| $\mathrm{~S}_{2}$ | 10 |

reduced state table

| A | B | $\mathrm{X}_{1}$ | $\mathrm{X}_{0}$ | $\mathrm{~A}^{\text {next }}$ | $\mathrm{B}^{\text {next }}$ | Y |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | $\mathbf{x}$ | $\mathbf{x}$ | 0 | 0 | 1 |

symbolic state table

| state X | next | Y |  |
| :--- | :--- | :--- | :--- |
| $\mathrm{S}_{0}$ | 0 | $\mathrm{~S}_{0}$ | 0 |
| $\mathrm{~S}_{0}$ | 1 | $\mathrm{~S}_{0}$ | 0 |
| $\mathrm{~S}_{0}$ | 2 | $\mathrm{~S}_{0}$ | 0 |
| $\mathrm{~S}_{0}$ | 3 | $\mathrm{~S}_{1}$ | 0 |
| $\mathrm{~S}_{1}$ | 0 | $\mathrm{~S}_{0}$ | 0 |
| $\mathrm{~S}_{1}$ | 1 | $\mathrm{~S}_{2}$ | 0 |
| $\mathrm{~S}_{1}$ | 2 | $\mathrm{~S}_{0}$ | 0 |
| $\mathrm{~S}_{1}$ | 3 | $\mathrm{~S}_{0}$ | 0 |
| $\mathrm{~S}_{2}$ | $\mathbf{x}$ | SO | 1 |
|  |  |  |  |


unlock combination is $\underline{31}$,
moving you to state $S_{2}$, and issuing the "unlock" signal $\mathrm{Y}=1$, and the FSM, then, moves to the reset/lock state $S_{0}$ next, test the FSM operation with Simulink

## Simulink implementation




Example 10



Example 10


Example 10

Example 11 - Electronic keypad lock. Having figured out the operation of your Moore FSM padlock, you now wish to derive a Mealy version. Since you know that the unlock combination is 31, you may start with a Mealy state diagram. Only two states are needed now because the system issues the unlock output, $\mathrm{Y}=1$, as soon as it has recognized the second digit, $\mathrm{X}=1$. The system unlocks, and then moves to the reset state.

unlock, and then move to reset state

symbolic state table

| present <br> state | next <br> state |  |  |  | output <br> Y |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{X}=0$ | $\mathrm{X}=1$ | $\mathrm{X}=2$ | $\mathrm{X}=3$ | $\mathrm{X}=0$ | $\mathrm{X}=1$ | $\mathrm{X}=2$ | $\mathrm{X}=3$ |
| $\mathrm{~S}_{0}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ | 0 | 0 | 0 | 0 |
| $\mathrm{~S}_{1}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ | 0 | 1 | 0 | 0 |

State encoding. With two states, we need one state variables, say, A, and one D flip-flop, and represent the states as follows:

$$
\begin{aligned}
& \mathrm{S}_{0} \equiv \frac{\mathrm{~A}}{0} \\
& \mathrm{~S}_{1} \equiv 1
\end{aligned}
$$

and also, replace the decimal X with its binary 2-bit representation, $\mathrm{X}_{1} \mathrm{X}_{0}$

## encoded state table

| present <br> state | next state <br> $\mathrm{A}^{\text {next }}$ |  |  | output <br> Y |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | $\mathrm{X}=00$ | $\mathrm{X}=01$ | $\mathrm{X}=10$ | $\mathrm{X}=11$ | $\mathrm{X}=00$ | $\mathrm{X}=01$ | $\mathrm{X}=10$ | $\mathrm{X}=11$ |
|  | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |

next-state \& output equations

| present <br> state | next state <br> $\mathrm{A}^{\text {next }}$ |  |  |  | output <br> Y |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{X}=00$ | $\mathrm{X}=01$ | $\mathrm{X}=10$ | $\mathrm{X}=11$ | $\mathrm{X}=00$ | $\mathrm{X}=01$ | $\mathrm{X}=10$ | $\mathrm{X}=11$ |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |



$$
\mathrm{A}^{\mathrm{next}}=\mathrm{X}_{1} \mathrm{X}_{0}
$$


$\mathrm{Y}=\mathrm{AX}_{1}{ }^{\prime} \mathrm{X}_{0}$


## Simulink implementation



## next-state \& output sub-function

$$
\begin{aligned}
& \mathrm{A}^{\text {next }}=\mathrm{X}_{1} \mathrm{X}_{0} \\
& \mathrm{Y}=\mathrm{AX}_{1}{ }^{\prime} \mathrm{X}_{0}
\end{aligned}
$$



Example 11



Example 11


Example 12 - Electronic keypad lock. Having enjoyed analyzing the 2-digit padlock, you now wish to build your own electronic keypad lock with a 3-digit combination and program the unlocking combination to be the course number of your favorite ECE course, that is, 231 !

As before, the keypad accepts as input X only the decimal digits, $0,1,2,3$, and converts them to binary through an A/D converter, that is, each decimal $\mathrm{X}=$ $0,1,2,3$ is represented by the bits, $X_{1} X_{0}=00,01,10,11$, so that there are two binary inputs to the FSM.

As the user enters a sequence of decimal numbers X into the keypad, the FSM should generate an "unlock" signal, $\mathrm{Y}=1$, whenever the previous two decimal inputs were, $\mathrm{X}=2,3$, and the current input is, $\mathrm{X}=1$. Otherwise, the system should remain locked at, $\mathrm{Y}=0$. Because the output Y depends on the input X , this will be a Mealy FSM.

Based on the above description, determine: (a) the state diagram, (b) state table, (c) next-state and output equations, (d) build a realization using D flipflops, and (e) simulate the operation of the system by sending in the following test sequence of decimal inputs and verifying the expected outputs:

$$
\begin{aligned}
& X=\left[\begin{array}{llllllllllllllll}
1 & 0 & 2 & 3 & 1 & 0 & 1 & 1 & 2 & 3 & 1 & 2 & 2 & 3 & 1 & 0
\end{array}\right] \\
& Y=\left[\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$


got 231, which unlocks, and then moves to reset state


## state table

| present <br> state | next <br> state |  |  |  | output |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{X}=0$ | $\mathrm{X}=1$ | $\mathrm{X}=2$ | $\mathrm{X}=3$ | $\mathrm{X}=0$ | $\mathrm{X}=1$ | $\mathrm{X}=2$ | $\mathrm{X}=3$ |
|  | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{0}$ | 0 | 0 | 0 | 0 |
| $\mathrm{~S}_{0}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | 0 | 0 | 0 | 0 |
| $\mathrm{~S}_{2}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{0}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{0}$ | 0 | 1 | 0 | 0 |

State encoding. With three states, we need two state variables, say, A, B, and we will use plain binary encoding to represent the states:

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { A B } \\
\mathrm{S}_{0} \equiv 0 \\
\mathrm{~S}_{1} \equiv 0 \\
\mathrm{~S}_{2} \equiv 1
\end{array} \\
& \hline 1
\end{aligned}
$$

## encoded state table

| present <br> state | next states $A^{\text {next }}, B^{\text {next }}$ |  |  |  | output Y |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A B | $\mathrm{X}=0$ | $\mathrm{X}=1$ | $\mathrm{X}=2$ | $\mathrm{X}=3$ | $\mathrm{X}=0$ | $\mathrm{X}=1$ | $\mathrm{X}=2$ | $\mathrm{X}=3$ |
| 00 | 00 | 00 | 01 |  | 0 | 0 | 0 | 0 |
| 01 | 00 | 00 | 01 | 10 | 0 | 0 | 0 | 0 |
| 10 | 00 | 00 | 01 | 00 | 0 | 1 | 0 | 0 |



K-map simplifications



$$
\mathrm{D}_{\mathrm{A}}=\mathrm{A}^{\text {next }}=\mathrm{B} \mathrm{X}_{1} \mathrm{X}_{0}
$$

K-map simplifications

| $\mathrm{X}_{1} \mathrm{X}_{0}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 00 | 01 | 11 | 10 |
|  | 00 |  |  |  |
| 01 |  |  |  |  |
| 11 | X | x | X | X |
| 10 |  | 1 |  |  |
|  |  | $\mathrm{Y}=\mathrm{A}$ | ${ }^{\prime} \mathrm{X}$ |  |

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{A}}=\mathrm{A}^{\text {next }}=\mathrm{B} \mathrm{X}_{1} \mathrm{X}_{0} \\
& \mathrm{D}_{\mathrm{B}}=\mathrm{B}^{\text {next }}=\mathrm{X}_{1} \mathrm{X}_{0}{ }^{\prime} \\
& \mathrm{Y}=\mathrm{AX}_{1}{ }^{\prime} \mathrm{X}_{0}
\end{aligned}
$$

$$
[\mathrm{A}, \mathrm{~B}, \mathrm{X} 1, \mathrm{X} 0]=\operatorname{a2d}(0: 15,4) ;
$$

$$
\text { Anext }=B \& X 1 \& X 0
$$

$$
\text { Bnext }=\mathrm{X} 1 \text { \& } \sim \mathrm{X0}
$$

$$
Y=A \& \sim X 1 \& X 0
$$

[A , B , X1 , X0 , Anext , Bnext , Y]

$$
\begin{aligned}
& D_{A}=A^{\text {next }}=B X_{1} X_{0} \\
& D_{B}=B^{\text {next }}=X_{1} X_{0}{ }^{\prime} \\
& Y=A X_{1}{ }^{\prime} X_{0}
\end{aligned}
$$

## Simulink implementation




Example 12

## scope \& date export sub-function







$t$, clock periods

```
input X = 1 0
```




$t$, clock periods

```
t = S.time;
P = S.data(:,1);
X1 = S.data(:,2);
X0 = S.data(:,3);
Y = S.data(:,4);
```

set (0,'DefaultAxesFontSize',10);
figure;
subplot(4,1,1); stairs(t,P, 'g-'); yaxis(0,2); ylabel('clock');
subplot(4,1,2); stairs(t,X1,'b-'); yaxis(0,2); ylabel('X1');
subplot(4,1,3); stairs(t,X0,'b-'); yaxis(0,2); ylabel('X0');
subplot(4,1,4); stairs(t,Y, 'r-'); yaxis(0,2); ylabel('Y');
xlabel('\{\itt\}, clock periods')
$X=d 2 a([X 1, X 0],+1) ; \quad \%$ decimal version of $[X 1, X 0]$
set (0,'DefaultAxesFontSize',10);
figure;
subplot(3,1,1); stairs(t,P, 'g-'); yaxis(0,2); ylabel('clock');
subplot(3,1,2); stairs(t,X,'b-'); yaxis(0,4); ylabel('X');
subplot(3,1,3); stairs(t,Y,'r-') ; yaxis(0,2); ylabel('Y');
xlabel('\{\itt\}, clock periods')

Example 13 - Vending machine. We consider the design of a Moore FSM for a simple vending machine that accepts nickels or dimes as inputs, deposited one at a time, and dispenses some candy that costs 15 cents, and also returns some change, if necessary [cf. Maxfield].
Five states will be needed:

$$
\begin{aligned}
& S_{00}-0 \text {-cent state, also the reset state (entered upon power-up) } \\
& S_{05}-5 \text {-cent state } \\
& S_{10}-10 \text {-cent state } \\
& S_{15}-15 \text {-cent state } \\
& S_{20}-20 \text {-cent state }
\end{aligned}
$$

The state diagram is shown on the next page using the arrow convention explained on p. 59 that displays input expressions instead of values.


note: the possible input combinations are $\mathrm{N}^{\prime}, \mathrm{N}^{\prime} \mathrm{D}, \mathrm{N}^{\prime} \mathrm{D}^{\prime}$
main part of state table - with don't care inputs at $S_{15}$ and $S_{20}$

| present | A | B | C | N | D | next | A | B | C | Y | z |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{00}$ | 1 | 0 | 0 | 0 | 0 | $\mathrm{S}_{00}$ | 1 | 0 | 0 | 0 | 0 |  |
| $\mathrm{S}_{00}$ | 1 | 0 | 0 | 1 | 0 | $\mathrm{S}_{05}$ | 1 | 0 | 1 | 0 | 0 |  |
| $\mathrm{S}_{00}$ | 1 | 0 | 0 | 0 | 1 | $\mathrm{S}_{10}$ | 0 | 0 | 0 | 0 | 0 |  |
| $\mathrm{S}_{05}$ | 1 | 0 | 1 | 0 | 0 | $\mathrm{S}_{05}$ | 1 | 0 | 1 | 0 | 0 | state encoding |
| $\mathrm{S}_{05}$ | 1 | 0 | 1 | 1 | 0 | $\mathrm{S}_{10}$ | 0 | 0 | 0 | 0 | 0 |  |
| $\mathrm{S}_{05}$ | 1 | 0 | 1 | 0 | 1 | $\mathrm{S}_{15}$ | 0 | 0 | 1 | 0 | 0 | A B C |
| $\mathrm{S}_{10}$ | 0 | 0 | 0 | 0 | 0 | $\mathrm{S}_{10}$ | 0 | 0 | 0 | 0 | 0 | $\begin{array}{lllll}\mathrm{S}_{00} & 1 & 0 & 0 \\ \mathrm{~S}^{2} & 1 & 0 & 1\end{array}$ |
| $\mathrm{S}_{10}$ | 0 | 0 | 0 | 1 | 0 | $\mathrm{S}_{15}$ | 0 | 0 | 1 | 0 | 0 | $\mathrm{S}_{05} 11001$ |
| $\mathrm{S}_{10}$ | 0 | 0 | 0 | 0 | 1 | $\mathrm{S}_{20}$ | 0 | 1 | 1 | 0 | 0 | $\begin{array}{llll} S_{10} & 0 & 0 & 0 \\ S_{15} & 0 & 0 & 1 \end{array}$ |
| $\mathrm{S}_{15}$ | 0 | 0 | 1 | 0 | 0 | $\mathrm{S}_{00}$ | 1 | 0 | 0 | 1 | 0 | $\mathrm{S}_{20} 011$ |
| $\mathrm{S}_{15}$ | 0 | 0 | 1 | 1 | 0 | $\mathrm{S}_{00}$ | 1 | 0 | 0 | 1 | 0 |  |
| $\mathrm{S}_{15}$ | 0 | 0 | 1 | 0 | 1 | $\mathrm{S}_{00}$ | 1 | 0 | 0 | 1 | 0 |  |
| $\mathrm{S}_{20}$ | 0 | 1 | 1 | 0 | 0 | $\mathrm{S}_{00}$ | 1 | 0 | 0 | 1 | 1 |  |
| $\mathrm{S}_{20}$ | 0 | 1 | 1 | 1 | 0 | $\mathrm{S}_{00}$ | 1 | 0 | 0 | 1 | 1 |  |
| $\mathrm{S}_{20}$ | 0 | 1 | 1 | 0 | 1 | $\mathrm{S}_{00}$ | 1 | 0 | 0 | 1 | 1 |  |

rest of state table with unsused or don't care states

| A <br> present | B | C | N | A | B <br> next | C | $\mathbf{Y}$ | $\mathbf{Z}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
|  |  |  |  |  |  |  |  |  |  |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| some used states, |  |  |  |  |  |  |  |  |  |
| some unused states, |  |  |  |  |  |  |  |  |  |
| but, the inputs, $\mathrm{N}=1, \mathrm{D}=1$, |  |  |  |  |  |  |  |  |  |
| are allowed |  |  |  |  |  |  |  |  |  |

next-state \& output equations are obtained from the state table after taking advantage of all unused don't care entries.
next states \& output equations

$$
\begin{aligned}
& \mathrm{A}^{\text {next }}=\mathrm{A}^{\prime} \mathrm{C}+\mathrm{AN}^{\prime} \mathrm{D}^{\prime}+\mathrm{AC}^{\prime} \mathrm{D}^{\prime} \\
& \mathrm{B}^{\text {next }}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D} \\
& \mathrm{C}^{\text {next }}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{AC} \mathrm{~N}+\mathrm{C}^{\prime} \mathrm{N} \\
& \mathrm{Y}=\mathrm{A}^{\prime} \mathrm{C} \\
& \mathrm{Z}=\mathrm{B}
\end{aligned}
$$

MATLAB code
for producing the main part of the stable on p. 171
and the rest of the state table on p. 172

```
% MATLAB code used to generate the state table
% generate main part of state table
n = [16 18 17 20 22 21 0 2 1 4 6 5 12 14 13];
% generate rest of state table
% n = [19 23 3 7 15 11 27 31 8 9 10 24 25 26 28 29 30];
[A,B,C,N,D] = a2d(n,5); % generate states & inputs
Anext = (~A & C) | (A & ~N & ~D) | (A & ~C & ~D);
Bnext = ~A & ~C & D;
Cnext = (~A & ~C & D) | (A & C & ~N) | (~C & N);
Y = ~A & C;
Z = B;
[A,B,C,N,D,Anext, Bnext, Cnext, Y, Z]
% print state table
```



Example 14 - Elevator controller. [this is a simplified version of a DLD lab from earlier years.] Consider the design of a simple elevator controller for a three-story building. There are three states $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ defined so that,

$$
\begin{aligned}
& \mathrm{F}_{1}=\text { elevator is at floor } 1 \\
& \mathrm{~F}_{2}=\text { elevator is at floor } 2 \\
& \mathrm{~F}_{3}=\text { elevator is at floor } 3
\end{aligned}
$$

The input to the controller is the (decimal) variable X , defined so that,

$$
\begin{array}{ll}
\mathrm{X}=0, & \text { no request (i.e., stay on the current floor) } \\
\mathrm{X}=1, & \text { move to floor } 1 \\
\mathrm{X}=2, & \text { move to floor } 2 \\
\mathrm{X}=3, & \text { move to floor } 3
\end{array}
$$

There is also a reset input R , such that $\mathrm{R}=1$ will cause the elevator to move to floor 1 from any floor, regardless of X . Otherwise, $\mathrm{R}=0$ has no effect, and the input X will determine the action.

There is also an output Y taking the (decimal) values $\mathrm{Y}=1,2,3$, that are generated when the elevator is moving to floors $1,2,3$, respectively.


| input \& output encoding |  |  | state encoding |  |  | three states require two D flip-flops $\mathrm{D}_{\mathrm{A}} \& \mathrm{D}_{\mathrm{B}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{x}=\mathrm{x}_{1} \mathrm{x}_{0}$ | $\mathrm{Y}=\mathrm{Y}_{1} \mathrm{Y}_{0}$ |  |  | A B |  |  |
| $\begin{array}{llll}0 & = & 0 & 0 \\ 1= & 0 & 1 \\ 2= & 1 & 0 \\ 3= & 1 & 1\end{array}$ | $\begin{aligned} & 1=0 \\ & 2=1 \\ & 3=1 \end{aligned}$ |  | F1 F2 F3 | $\begin{array}{lll} 0 & 0 & \text { unused } \\ 0 & 1 & \\ 1 & 0 & \\ 1 & 1 & \end{array}$ |  |  |
|  | AB | 00 | 01 | 11 | 10 |  |
|  | 00 | xx | xx | xx | xx | don't'cares |
| $\begin{aligned} & \text { K-maps for } \\ & A^{\text {next }}, B^{\text {next }} \end{aligned}$ | $\mathrm{F}_{1} 01$ | $\mathrm{F}_{1} 01$ | $\mathrm{F}_{1} 01$ | $F_{3} 11$ | $\mathrm{F}_{2} 10$ |  |
| K-maps for | $\mathrm{F}_{3} 11$ | $F_{3} 11$ | $\mathrm{F}_{1} 01$ | $\mathrm{F}_{3} 11$ | $\mathrm{F}_{2} 10$ |  |
| $\begin{gathered} \mathrm{Y}_{1}, \mathrm{Y}_{0} \\ \text { are similar } \end{gathered}$ | $\mathrm{F}_{2} 10$ | $\mathrm{F}_{2} 10$ | $\mathrm{F}_{1} 01$ | $\mathrm{F}_{3} 11$ | $\mathrm{F}_{2} 10$ |  |



## adding the reset input R and the output Y (in decimal)

| $\mathrm{A}^{\text {next }}=\mathrm{R}^{\prime}\left(\mathrm{X}_{1}+\mathrm{X}_{0}{ }^{\prime} \mathrm{A}\right)$ |
| :--- |
| $\mathrm{B}^{\text {next }}=\mathrm{R}+\mathrm{X}_{0}+\mathrm{X}_{1}{ }^{\prime}\left(\mathrm{A}+\mathrm{B}^{\prime}\right)$ |
| $\mathrm{Y}=2 \mathrm{~A}^{\text {next }}+\mathrm{B}^{\text {next }}($ decimal $)$ |$\quad$| resets to state $\mathrm{F}_{1}=\mathrm{AB}=01$, if $\mathrm{R}=1$, |
| :--- |
| and normal operation, if $\mathrm{R}=0$ |

requires two D flip-flops


computed state table

$$
\begin{array}{|l}
\mathrm{A}^{\text {next }}=\mathrm{R}^{\prime}\left(\mathrm{X}_{1}+\mathrm{X}_{0}{ }^{\prime} \mathrm{A}\right) \\
\hline \mathrm{B}^{\text {next }}=\mathrm{R}+\mathrm{X}_{0}+\mathrm{X}_{1}{ }^{\prime}\left(\mathrm{A}+\mathrm{B}^{\prime}\right) \\
\hline
\end{array}
$$

$\mathrm{Y}=2 \mathrm{~A}^{\text {next }}+\mathrm{B}^{\text {next }}$
$\mathrm{X}=2 \mathrm{X}_{1}+\mathrm{X}_{0}$
reduced state table

| $R$ | $X_{1}$ | $X_{0}$ | $A$ | $B$ | $D_{A}$ | $D_{B}$ | $X$ | $Y$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 2 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 3 |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 2 | 2 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 2 | 2 |
| 0 | 1 | 1 | 0 | 1 | 1 | 1 | 3 | 3 |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 3 | 3 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 |


| $R$ | $X_{1}$ | $X_{0}$ | $A$ | $B$ | $D_{A}$ | $D_{B}$ | X | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 2 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 | 1 | 2 | 1 |
| 1 | 1 | 1 | 0 | 1 | 0 | 1 | 3 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 3 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 | 3 | 1 |

next, replace states by their symbolic names

| symbolic state table | $\mathrm{A}^{\text {next }}=\mathrm{R}^{\prime}\left(\mathrm{X}_{1}+\mathrm{X}_{0}{ }^{\prime} \mathrm{A}\right)$ | $\mathrm{Y}=2 \mathrm{~A}^{\text {next }}+\mathrm{B}^{\text {next }}$ |
| :--- | :--- | :--- |
|  | $\mathrm{B}^{\text {next }}=\mathrm{R}+\mathrm{X}_{0}+\mathrm{X}_{1}{ }^{\prime}\left(\mathrm{A}+\mathrm{B}^{\prime}\right)$ | $\mathrm{X}=2 \mathrm{X}_{1}+\mathrm{X}_{0}$ |


| $R$ | $X_{1}$ | $X_{0}$ | $A$ | $B$ | $D_{A} D_{B}$ | $X$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $Y$ | $Y$ |  |  |  |  |  |
| 0 | 0 | 0 | $F 1$ | $F 1$ | 0 | 1 |
| 0 | 0 | 0 | $F 2$ | $F 2$ | 0 | 2 |
| 0 | 0 | 0 | $F 3$ | $F 3$ | 0 | 3 |
| 0 | 0 | 1 | $F 1$ | $F 1$ | 1 | 1 |
| 0 | 0 | 1 | $F 2$ | $F 1$ | 1 | 1 |
| 0 | 0 | 1 | $F 3$ | $F 1$ | 1 | 1 |
| 0 | 1 | 0 | $F 1$ | $F 2$ | 2 | 2 |
| 0 | 1 | 0 | $F 2$ | $F 2$ | 2 | 2 |
| 0 | 1 | 0 | $F 3$ | $F 2$ | 2 | 2 |
| 0 | 1 | 1 | $F 1$ | $F 3$ | 3 | 3 |
| 0 | 1 | 1 | $F 2$ | $F 3$ | 3 | 3 |
| 0 | 1 | 1 | $F 3$ | $F 3$ | 3 | 3 |


| $R$ | $X_{1}$ | $X_{0}$ | $A$ | $D_{A}$ | $D_{B}$ | $X$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| X |  |  |  |  |  |  |
| 1 | 0 | 0 | $F 1$ | $F 1$ | 0 | 1 |
| 1 | 0 | 0 | $F 2$ | $F 1$ | 0 | 1 |
| 1 | 0 | 0 | $F 3$ | $F 1$ | 0 | 1 |
| 1 | 0 | 1 | $F 1$ | $F 1$ | 1 | 1 |
| 1 | 0 | 1 | $F 2$ | $F 1$ | 1 | 1 |
| 1 | 0 | 1 | $F 3$ | $F 1$ | 1 | 1 |
| 1 |  |  |  |  |  |  |
| 1 | 1 | 0 | $F 1$ | $F 1$ | 2 | 1 |
| 1 | 1 | 0 | $F 2$ | $F 1$ | 2 | 1 |
| 1 | 1 | 0 | $F 3$ | $F 1$ | 2 | 1 |
| 1 | 1 | 1 | $F 1$ | $F 1$ | 3 | 1 |
| 1 | 1 | 1 | $F 2$ | $F 1$ | 3 | 1 |
| 1 | 1 | 1 | $F 3$ | $F 1$ | 3 | 1 |

equivalent to the table on p. 177

## Simulink implementation


file: elevs.slx

## Simulink implementation input subfunction

            \(\mathbf{x}=\left[\begin{array}{llllllllll}0 & 2 & 3 & 1 & 2 & 0 & 3 & 3 & 2\end{array}\right]\)
    \(\mathrm{x}=\left[\begin{array}{llllllllll}0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1\end{array}\right]\)
    \(x 0=\left[\begin{array}{llllllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0\end{array}\right]\)
    inputs


Example 14

Simulink implementation next-states subfunction

$$
\mathrm{D}_{\mathrm{A}}=\mathrm{A}^{\text {next }}=\mathrm{R}^{\prime}\left(\mathrm{X}_{1}+\mathrm{X}_{0}^{\prime} \mathrm{A}\right)
$$

$$
\mathrm{D}_{\mathrm{B}}=\mathrm{B}^{\text {next }}=\mathrm{R}+\mathrm{X}_{0}+\mathrm{X}_{1}^{\prime}\left(\mathrm{A}+\mathrm{B}^{\prime}\right)
$$



Example 14

## Simulink implementation scope \& data export subfunction



## Simulink

## implementation

## scope output

state encoding
F A B

|  | 0 | 0 | unused |
| :--- | :--- | :--- | :--- |
| $\mathrm{F}_{1}$ | 0 | 1 |  |
| $\mathrm{~F}_{2}$ | 1 | 0 |  |
| $\mathrm{~F}_{3}$ | 1 | 1 |  |

$$
\begin{aligned}
& \mathrm{x}=\left[\begin{array}{lllllllll}
0 & 2 & 3 & 1 & 2 & 0 & 3 & 3 & 2
\end{array}\right] \\
& \mathrm{x} 1=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] \\
& x 0=\left[\begin{array}{lllllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0
\end{array}\right] \\
& R=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

reset

P


Da


Db


Time offset: 0


Example 14



Example 14

